
SYNTHESIS OF N-BENZOYL L- AND D-2,3,6-TRIDEOXY-3-AMINO-XYLO-HEXOSE FROM NON-CARBOHYDRATE PRECURSORS

Giovanni Fronza, Claudio Fuganti, Piero Grasselli and Giulio Marinoni

- Istituto di Chimica del Politecnico, Centro del CNR per la Chimica delle Sostanze Organiche Naturali, 20133 Milano, Italy
- <u>Summary</u> The enantiomeric alcohols (2) and (<u>11</u>), obtained from (2<u>R</u>,3<u>R</u>) tartaric acid and, respectively, <u>L</u>-threenine, have been used to construct the C₆, enantiomeric deoxy amino sugar derivatives (<u>7</u>) and (<u>12</u>)

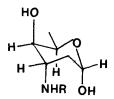
For some years now there has been considerable interest in the synthesis of the enantiomeric forms of the four configurational isomers of 2,3,6-trideoxy-3-aminohexose, because of the biological properties shown by natural products and synthetic analoga of which three of the above amino sugars are a part¹. The several chiral syntheses reported up to now are, however, all carbohydrate based, and we here describe the obtainment of the N-benzoyl derivative of L- and D-2,3,6-trideoxy-3-amino-<u>xylo</u>-hexopyranose (3-<u>epi</u>daunosamine) through a procedure which uses as chiral sources easily available (2<u>R</u>, 3<u>R</u>) tartaric acid and, respectively, L-threeonine.

To this end, $(2\underline{R},3\underline{R})$ tartaric acid was converted according to reported procedures^{2,3} into the mono 4-toluenesulfonyl derivative (<u>1</u>), which, upon LiAlH₄ reduction in Et₂O, gave in <u>ca</u>. 40% not optimized yield, the (2\underline{R},3\underline{S}) alcohol (<u>2</u>), shown by g.l.c. and comparison with authentic sample to contain <u>ca</u>. 3% of the <u>erythro</u> isomer. Oxidation of (<u>2</u>) with pyridinium chlorochromate in CH₂Cl₂-sodium acetate⁴, and treatment of the reaction mixture with (C₆H₅)₃P=CHCO₂Et led to the C₆, α,β -unsaturated ester (<u>3</u>), shown by g.l.c. and ¹Hn.m.r. studies to be a 65:35 mixture of <u>E</u>- and <u>Z</u>-isomers, $[\alpha]_D^{2O}$ +28.5° (c l.1, CHCl₃), in <u>ca</u>. 30% yield and 45% recovery of the starting alcohol (<u>2</u>). Compound (<u>3</u>) was reacted⁵ with dry ammonia in methanol at 0°C for 48 h, and the crude, evaporated material was hydrolysed with 2N HCl to a crystalline lactone hydrochloride, showing in the i.r. v_{CO} 1780 cm⁻¹, with a minor band at 1760 cm⁻¹. This material was benzoylated in pyridine-CH₂Cl₂ with 1 mol. eq. of benzoyl chloride, to give after Sio₂ column chromatography a crystalline δ -lactone, m.p. 230°C, from ethyl acetate-methanol, $\left[\alpha\right]_D^{20}$ -25.6° (c 0.5, EtOH), in <u>ca</u> 60% yield from (<u>3</u>). The same compound is obtained when the crude product of addition of ammonia was benzoylated, the crude reaction product separated by Sio₂ column chromatography into a major isomer (<u>4</u>), oil, $\left[\alpha\right]_D^{20}$ +30° (c 1.1, EtOH), 75% yield from (<u>3</u>), and into a mixture of (<u>4</u>) and of an isomeric material, 10% from (<u>3</u>), and compound (<u>4</u>) was treated with 2 mol. eq. of NaOH 8 h at room temperature, and subsequently, with aqueous acetic acid. Alternatively, compound (<u>4</u>) gave with aqueous acetic acid the methyl ester (<u>5</u>). The abovementioned δ -lactone was assigned the <u>xylo</u> configuration depicted in (<u>6</u>), on the basis of ¹³C and ¹H-n.m.r. studies (Table). The δ -lactone structure is supported by the presence of a coupling between H-4 and the hydroxyl group and by the value (67.8 ppm) of the ¹³C chemical shift due to C-4.

Furthermore, the values of J(2,3) and J(2',3) point to an axial orientation of the $NHCOC_{6}H_{5}$ substituent at C-3, because for an equatorial substituent at the same position we would expect a value for J(2,3)+J(2',3) of about 15-18 Hz. Compound (<u>6</u>) in THF was

comp.:		(<u>6</u>)	(<u>7</u>) ³			(6)		
H~1			5.20	J(1,2) 1	.5	C-1	171.3	
H2	2.51	J(2,3) 3.6	1.49	J(1,2') 3	.7	C-2	31.8	
H-2'	2.91	J(2',3) 6.9	2.14	J(2,2')14	.0	C-3	48.9	
H-3	4.31	J(2,2')18.0	~ 4.2	J(2,3) 4	.0	C-4	67.8	
H-4	3.72	J(3,4) 3.7	3.37	J(2',3) 3	.7	C-5	75.4	
H-5	4.69	J(4,5) 1.5	~ 4.2	J(3,4) 4	.5	C-6	17.1	
Me	1.29	J(5,6) 6.7	1.08	J(4,5) 2	.0	CONH	167.8	
0н-4	5.62	J(4,OH) 4.0	4.98	J(4,0H) 5	.2			
0н-1			6.72	J(1,0H) 3	.5			
				J(5,6) 6	,5			

TABLE: ¹H and ¹³C n.m.r. parameters (d₆-DMSO sol.; chem. shifts in ppm from int. TMS; J in Hz)


The signals of (7) are rather broad and the accuracy of J's is \pm 0.5 Hz

reduced with a toluene solution of diisobutylaluminium hydride at -50°C, in 65% yield, to N-benzoyl 2,3,6-trideoxy-3-amino-L-xylo-hexopyranose (7), m.p. 215-218°C, from ethyl acetate-methanol, $\left[\alpha\right]_{D}^{20}$ -58.5° (c 0.25, EtOH), unchanged after 24 h. The ¹H n.m.r. spectrum indicates that in DMSO solution (7) holds an axial orientation of the C-1 hydroxyl group, as shown by the very small J(1,2) and J(1,2') values (Table). Within 1 h the signals of the anomeric form appear reaching about 30%, which remains the equilibrium concentration. The axial orientation of the substituent at C-3 is supported by the J(2,3) and J(2',3) values, typical of axial-equatorial and equatorial-equatorial relationships between the protons in positions 2 and 3. Explorative acid hydrolysis of (7) led to a non-crystalline aminosugar hydrochloride, converted back with C₆H₅COC1 and K₂CO₃ in aqueous acetone into (7) in 35% yield.

The <u>D</u>-enantiomer (<u>12</u>) was prepared starting from <u>L</u>-threonine (<u>8</u>) which was deaminated⁶ to (2<u>S</u>, 3<u>R</u>) dihydroxybutyric acid (<u>9</u>), esterified with methanolic dry HCl, and the methyl ester converted with 2,2-dimethoxypropane and 4-toluenesulfonic acid into the (2<u>S</u>, 3<u>R</u>)-ester (<u>10</u>), $\left[\alpha\right]_{D}^{20}$ -18.7° (c 4.1, CHCl₃), dist. 90°C at 70 mmHg, shown by glc analysis and comparison with authentic samples to be devoid of the <u>erythro</u> isomer, in <u>ca</u>. 45% yield from (<u>8</u>). Compound (<u>10</u>) was converted in 85% yield upon LiAlH_A reduction into the

 $(2\underline{S},3\underline{R})$ alcohol (<u>11</u>), the enantiomer of (<u>2</u>). From this compound N-benzoyl 2,3,6-trideoxy-3-amino-<u>D-xylo</u>-hexopyranose (<u>12</u>), identical in every respect to the <u>L</u>-isomer (<u>7</u>), but showing opposite optical rotation (+56.5°), was obtained through the above sequence.

 $(\underline{12})$ R= COC₆H₅

The high degree of stereospecificity of the β -addition of ammonia onto (3) here observed is in agreement with previous experiments with the <u>D,L-erythro</u> isomer of (3), which yielded, eventually, the N-acetyl <u>D,L-arabino</u> amino sugar (acosamine).⁵

¹for a review, see, F.Arcamone, <u>Chimica e Industria</u>,1977,<u>59</u>,281
²H.Meyer and D.Seebach, <u>Liebigs Ann</u>.,1975,2261
³J.A.Musich and H.Rapaport, <u>J.Amer.Chem.Soc</u>.,1978,<u>100</u>,4865
⁴E.J.Corey and J.W.Suggs, <u>Tetrahedron Letters</u>,1975,2647
⁵I.Dyong and H.Bendlin, <u>Chem.Ber</u>.,1978,<u>111</u>,1677
⁶C.E.Meyer and W.C.Rose, <u>J.Biol.Chem</u>.,1936,<u>115</u>,721

(Received in UK 5 July 1979)